350vip葡京新集团

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

日期: 2018-10-09
浏览次数: 616

本文旨在利用高光谱数据建立一个准确、可解释的植物病害识别模型。由真菌引起的大豆炭腐病是一种严重影响大豆产量的世界性病害。在383-1032 nm范围内,Resonon高光谱成像仪在240个不同的波长处捕获高光谱图像。针对大豆炭腐病,科学家建立了3D卷积分网络模型,模型分类精度为95.73%,并利用可视化显著图检验训练模型、敏感像素位置以及分类的特征敏感波段,发现:敏感特征波段为733 nm,这和常用的鉴别植物健康程度的特征波段范围(700-1000nm)是一致的。

 

实验:

感染炭腐病的大豆:分别在第3、6、9、12和15天采集健康的和受感染的大豆茎秆样品,在测量病害程度之前,实时采集健康的和收到感染的茎秆的高光谱图像。

测量仪器:美国Resonon高光谱成像仪,型号:Pika XC

(包含安装支架、移动平台、操作软件和2个70w卤素灯)

Pika XC性能:

光谱通道数:240,波段范围,400-1000 nm,分辨率:2.5 nm。

 

平台系统如下图(a)所示:

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

(a)    室内高光谱成像系统

(b)    不同光谱波段的大豆茎秆样品高光谱图像

(c)     大豆茎秆的内部和外部RGB图像的病害程度比较

3D-CNN模型由两个连接的卷积分模型组成,其中,一个小的构架用于防止训练模型过饱和。2个图层(3*3mm空间维度,16个波段的光谱维度)作为第一个卷积分分层,4个3*3*16的图层作为第二个卷积分层,修正线性输入模型作为输出层。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型 

结果分析:

1.    539个测试图像用于3d-cnn模型的精度评估。

如表1所示:模型分类准确为95.73%,0.92的分类精度也体现了不同病害阶段的普适性。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

2.    可视化显著图评价

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

我们可视化了用显著图分类出来的部分图像, 最大分类得分的输入图像用于判别敏感像素位置。图三为感染病害和健康图像的显著图。每个像素的级别大小用于评价其在分类过程中的重要性。受感染茎秆图像的显著图比图像中严重感染区域(红棕色)对应的位置具有更高的数值。这表明,严重感染的图像区域包含最敏感的像素位置,可以预测受感染分数。无论是健康图像还是感染图像,显著图高值都集中在茎的中部区域。

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

测试图像的直方图数据,代表了每个波长最大显著图的图像像元百分比C*=130(733 nm)

1.    在测试数据中,近红外区的波长733 nm (C*=130)是所有波长中最敏感的;

2.    在703 ~ 744 nm的光谱范围内,15个波长在测试图像的像素位置中占33%,是梯度值的最大值;

3.    受感染样本的可见光谱波长(400-700 nm)比健康样本更敏感。

 

结论

数据结果证明了3D-CDD模型可以有效地学习高维的高光谱数据,应用于大豆炭腐病鉴别领域。从生理学机理角度,可视化显著图解释了高光谱特征波段在分类中的重要性,使模型更具有说服力。因此,我们对于该模型更加自信,在未来,基于鲁棒可解释机制的波段选择将有助于高光谱数据的降维,也将有助于设计高通量表型的多光谱摄成像系统。


请点击如下链接,阅读文献:

植物病害的高光谱图像解译识别:3D-CNN与显著图模型

News / 相关新闻 More
2023 - 10 - 30
“倘若有什么植物妨碍了我们的计划,或是扰乱了我们干净整齐的世界,人们就会给它们冠上杂草之名。可如果你本没什么宏伟大计或长远蓝图,它们就只是清新简单的绿影,一点也不面目可憎。”     ——《杂草的故事》清新简单的绿影自然面目可爱,惹人注目,但人类生存之下,繁多冗杂的一片蔓延,确是明目张胆地抢了农作物的地盘,伤了农业发展。世界上的杂草有1000多种,它们通常生长迅速、繁殖能力强,会对农业产生一定的影响。杂草不仅会与农作物争夺土壤养分和水分,传播病虫害,从而影响农作物的生长和产量,含有毒素的杂草还会影响农作物品质。因此,对于农业生产来说,防治杂草对保证农作物的正常生长和产量至关重要。IRIS机载一体式激光雷达高光谱成像仪在评估杂草抗性方面的应用杂草防治是现代农业生产管理的重要组成部分。然而,过度依赖常用除草剂进行化学防治已导致大量抗性杂草的出现,对可持续农业构成重...
2023 - 10 - 27
雾霾问题,严重威胁人们的健康和生活质量,为了寻求解决方案,科学家们开始寻求各种可能的对策,其中之一就是从奶牛场中寻找突破口。这听起来可能有些奇怪,但事实上,氨气是雾霾形成的一个重要因素,而奶牛场和氨气之间存在着奇妙的关联。NH3氨气(Ammonia)氨是大气中的主要碱性物质,是细颗粒物的重要前驱体。它可以与硫酸盐和硝酸盐或其他化合物反应生成细颗粒物,造成各种环境和健康问题。氨沉降对于土壤酸化及水体富营养化也具有重要影响。人们越来越关注氨排放,以建立准确的排放清单并制定合理的减排措施。然而世界范围内许多氨排放清单的排放因子(EFs)和活动数据存在很大的不确定性。中国是氨排放的重要源,约占亚洲总排放的55%,约占全球总排放的20%。而农业是最重要的排放源,畜牧业氨排放占人为总排放的50%以上。因此,准确量化其排放特征显得尤为重要。科研团队为此开展研究北京大学环境科学与工程学院蔡旭晖研究团队于2...
2023 - 10 - 18
一般说来,丘陵起伏的地形,造成河水不能外泄,常在河口低洼处停蓄起来成湖,也就是河口湖。河口湖又称为“终点湖”、“尾闾湖”。指处于内流河河口、尾闾、终点的湖泊。由于气候变化、人口增多、工农业发展,加之水资源总量不足、时空分布不均等因素,导致不少地区的尾闾湖出现地下水位下降、绿洲面积减少、沙尘暴天气增加等问题。湖泊周边的生态系统发生变化,植被的多样性和数量减少,生态环境面临严重破坏。为了改善尾闾湖的现状,加强水资源管理,人工输水成为首要选择。基于此,生态输水对湖区植被的影响成为不少科研团队的研究方向。内陆河下游生态输水区白刺灌丛的水分利用策略:基于稳定同位素数据在干旱地区,内陆河流域的尾闾湖通常是绿洲边缘阻止风沙侵袭的天然屏障,其生态水文效应普遍表现为以地表水、地下水和天然降水为特征的植被水分关系。水分是尾闾湖周边沙地植被稳定的关键制约因子,植物-土壤水分关系是沙地生态水文过程的重要组成部分。...
2023 - 09 - 25
长江,全长6300余千米,中国第一大河,干流自西而东横贯中国中部,数百条支流辐辏南北,于崇明岛以东注入东海,流域面积180万平方千米,约占全国总面积的1/5,年入海水量9513亿立方米,占全国河流总入海水量的1/3以上。长江承载着丰富的生态系统和人类活动,对于全球气候变化的干预具有重要意义。在全球温室气体变化成为全球关注焦点的当下,长江作为世界上最大的亚热带河流,碳氮存储量备受科研研究所关注。今天的推荐的文章将带大家揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素。河流,尤其是(亚)热带地区的大型河流,在全球温室气体预算中起着重要作用。在大尺度温室气体预算中忽略水生成分可能会高估陆地生态系统中碳和氮的储存量,但由于河流数据集的空间分布偏差,对潜在生态过程的理解不足,河流温室气体排放的估计存在很大的不确定性。长江是世界上最大的亚热带河流,近几十年来面临着密集的人类活...
关闭窗口】【打印
Copyright ©2018-2023 350vip葡京新集团
犀牛云提供企业云服务

350vip葡京新集团

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开