350vip葡京新集团

LICA United Technology Limited

服务热线: 13910499761 010-51292601
企业邮箱
应用支持 Application Support
News 应用支持

理解北极苔原的甲烷预算

日期: 2020-07-30
浏览次数: 112

理解北极苔原的甲烷预算

北极苔原位于北半球,是多风无树的平原。因其温度低,生长季短,在冬季土壤下层(向下25-90 cm)被永久冻结(“多年冻土层”),阻碍了树木的生长。在夏季,多年冻土层融化仅足够用于植物的生长和繁殖,由于下层土壤冻结,水分无法下沉并形成湖泊和沼泽。苔原冻土地区占世界土壤结合碳的很大一部分(是当今大气中碳的1.5倍),湖泊和湿地中植被腐烂会产生CH4。过去几十年,人们认为北极苔原是碳汇,因为它可以通过光合作用捕获大气中大量的CO2,而如今受气候变化的影响,它已经成为重要的碳源,将温室气体释放到大气中。因此,对环境科学家而言,理解该生态系统中季节,植被,气候因子对CH4排放的影响至关重要。

大量研究表明,由于多年冻土层的季节性融化,在北极地区夏季CH4从大量不稳定有机质中排放。然而,很少有研究去理解秋季,冬季和春季(代表了北极地区一年中的70-80%)的CH4排放现象。以往的几个研究表明秋季甲烷通量高,而春冬季节无甲烷通量。在所附的文章中“ Cold season emissions dominate the Arctic tundra methane budget”,一组国际跨学科的科学家们报道了全年CH4排放,包括从沿着阿拉斯加北坡300公里纬度样带上的5个阿拉斯加北极苔原涡度协方差(EC)站点测得的通量数据,旨在理解CH4通量的季节性变化。此项目中,EC塔上安装了开路分析仪和闭路LGR-ICOS快速温室气体分析仪(GLA331-GGA,前身为FGGA-24EP)以在连续多年冻土层上进行全年CH4涡度通量观测。

理解北极苔原的甲烷预算

ABB LGR-ICOS 加强型机载温室气体分析仪(GLA331-GGA)


合并开路和闭路仪器中CH4的测量值并平均以产生半小时的涡度通量值。综合估算了5个站点从2013年6月到2015年1月的CH4通量,获取了两个夏-秋-冬周期数据,具有高时间分辨率。

理解北极苔原的甲烷预算

A-E:北坡5个EC站点测得的甲烷通量(mg C- CH4 m−2 h−1)。

F:阿拉斯加地图,表明站点位置和表面淹没的百分比(Zona et al.)。


这些观测结果表明长期以来,冷季(9-5月)CH4排放量与夏季排放量相当或更高。在最干燥的地区,冷季排放量主导了全年的CH4预算,这比以前在其它连续多年冻土地区模型中预测的贡献(35%)明显更高,同时也高于阿拉斯加北部(40%)的全年观测值数。

作者也研究了土壤状况对CH4通量变化的影响(淹水和温度)。

理解北极苔原的甲烷预算

在所示时段内,阿拉斯加北坡3个EC站点甲烷通量随土壤温度的变化。黑色箭头指示每个阶段的季节性进程(Zona et al.)。


他们发现在低淹水的EC站点CH4排放量最高,这与常规预测模型模拟和预测的淹水环境中CH4排放量最高的结果相矛盾。在土壤温度对CH4通量的影响上,作者假设冷季大量CH4排放与延长的“零点幕”期有关,该时期土壤和地下温度都保持在0℃附近,表明总排放量对土壤环境以及相关因素(例如降雪深度)非常敏感。

理解北极苔原的甲烷预算

假设土壤物理过程会影响CH4产生和氧化示意图,该过程与季节有关。浅蓝色表示土壤温度较低,浅棕色表示土壤温度较高;箭头指向夏季解冻锋面的方向,冷季冻结锋面的方向(Zona et al.)。


作者认为在零点幕期,即使CH4生成量较低,土壤近地表冻结降低了CH4氧化,导致了大量的CH4排放。零点幕期持续时间比生长季长,并且当持续时间延长时,如深厚的积雪会延长融化深度,CH4排放量增加。

总之,研究表明冷季(9-5月)CH4排放量占阿拉斯加苔原全年CH4排放量的50%以上,且这些排放量对土壤环境和相关的因素非常敏感。同时表明了,预计北极地区未来会持续变暖和积雪,这将导致全球CH4排放量的显著增加,且该过程中冷季排放量(9-5月)重要性增加。


点击阅读原文

Cold season emissions dominate the Arctic tundra methane budget.pdf



美国和英国研究团队在同一EC阿拉斯加4个站点上进行了另一项研究,解决了北极苔原空间异质性的难题。他们测量了土壤CH4和CO2通量以及一系列环境变量,旨在理解北极生态系统植被类型与CH4排放的关系和控制机制。该研究成果报道在所附的文章中“Vegetation Type Dominates the Spatial Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes”。

为了能在生长季早期安装通量环,作者利用每个站点的航拍图进行了调查,并检查了所有站点的植被地图以及描述,以最大程度与现存分类保持一致性。他们确实了EC研究地区6种不同的植被类型:

理解北极苔原的甲烷预算

丛生苔草(a)

苔藓-地衣(b)

苔藓-灌木(c)

湿苔草(d)

禾本科干杂草(e)

苔藓(f)


在融化季节(2014年6月)安装PVC环(高15 cm/直径20 cm)对选定植被类型的土壤样品进行分离,并在高峰季节(2014年7月)对植被进行调查。每个植被类型共放置6或7个(取决于站点)重复环,深度大约15 cm,所有站点总共91个环。

LGR的便携式温室气体分析仪(GLA132-GGA,前身是UGGA)依次连接各种植被环,使用圆柱形有机玻璃气室通过进口和出口管在闭路循环模式下以1HZ采样率测量CH4和CO2通量。

理解北极苔原的甲烷预算

ABB LGR便携式温室气体分析仪(GLA132-GGA)


在每个采样点,有机玻璃气室放置2 min,以实现气室顶空CH4和CO2浓度的稳定增加。测量后,移开气室以重建环境气体浓度,用黑色毛毡盖覆盖,再放回到环上2 min。

理解北极苔原的甲烷预算

气室通量测量设置示意图,包括气室,环尺寸以及所用设备的详细信息


用一个透明的气室测量净生态系统碳交换量(NEE),用不透明的气室测量生态系统的呼吸量(ER),以计算代表生态系统产生碳生物量总量的总初级生产力(GPP)。(GPP=NEE+ER)。利用线性斜率拟合技术计算气体通量。所有样地都在一天的相同时间测量(10 am-3 pm)。

理解北极苔原的甲烷预算

2014年夏季在4个阿拉斯加北极站点测得的总初级生产力(GPP)通量(Davidson et al.)


利用该设备,科学家们在所有样地的观测结果发现,湿苔草的平均CH4排放量最高,其它植被类型排放量较低。此外,还发现地下水位高于或位于土壤表面的样地CH4排放量最高。作者建立了几个多元回归模型以确定CH4通量的驱动因子,并检验GPP,溶解性有机碳和CH4通量之间的关系。他们发现,一个高度简化的植被分类仅包括3种植被类型(湿苔草,丛生苔草和其它),解释了整个样带中54%的CH4通量变化。其表现几乎与一个更复杂的模型一样,该模型包括多种生物和环境驱动因子例如地下水位,苔草高度以及土壤水分(解释58%的CH4通量变化)。

理解北极苔原的甲烷预算

A:CH4通量,B:2014年夏季在4个阿拉斯加北极站点测得的地下水位深度(正值=积水,负值=水位在土壤表层以下)。条形图是每个日期的平均值±标准误差(Davidson et al.)


作者得出的结论是植被是主要变量,解释了来自多个植被群落,环境状况以及地理位置的各种苔原类型CH4通量的空间异质性。湿苔草群落主导CH4排放,而其他植被类型排放率更低。这些发现表明了植被组成作为与CH4通量有关的条件的综合度量的重要性。

多年来,LGR-ICOS仪器在分析性能,易用性以及耐用性方面享有很高的声誉。其专利离轴积分腔输出光谱技术(OA-ICOS)已在多家同行评审的出版物中得到了证明与肯定。LGR ICOS分析仪可以在多样化的环境中收集科学数据,在海底1000 m处,积雪覆盖的森林,北极苔原,亚马逊河漫滩平原,沙漠,飞机,直升机或无人机上,运行的汽车或卡车上,火车屋顶上或极地海洋巡游的研究船上都可以看到其身影。

理解北极苔原的甲烷预算

ABB LGR-ICOS仪器的应用场景

点击阅读原文

Vegetation Type Dominates the Spatial Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes.pdf

News / 相关新闻 More
2023 - 10 - 30
“倘若有什么植物妨碍了我们的计划,或是扰乱了我们干净整齐的世界,人们就会给它们冠上杂草之名。可如果你本没什么宏伟大计或长远蓝图,它们就只是清新简单的绿影,一点也不面目可憎。”     ——《杂草的故事》清新简单的绿影自然面目可爱,惹人注目,但人类生存之下,繁多冗杂的一片蔓延,确是明目张胆地抢了农作物的地盘,伤了农业发展。世界上的杂草有1000多种,它们通常生长迅速、繁殖能力强,会对农业产生一定的影响。杂草不仅会与农作物争夺土壤养分和水分,传播病虫害,从而影响农作物的生长和产量,含有毒素的杂草还会影响农作物品质。因此,对于农业生产来说,防治杂草对保证农作物的正常生长和产量至关重要。IRIS机载一体式激光雷达高光谱成像仪在评估杂草抗性方面的应用杂草防治是现代农业生产管理的重要组成部分。然而,过度依赖常用除草剂进行化学防治已导致大量抗性杂草的出现,对可持续农业构成重...
2023 - 10 - 27
雾霾问题,严重威胁人们的健康和生活质量,为了寻求解决方案,科学家们开始寻求各种可能的对策,其中之一就是从奶牛场中寻找突破口。这听起来可能有些奇怪,但事实上,氨气是雾霾形成的一个重要因素,而奶牛场和氨气之间存在着奇妙的关联。NH3氨气(Ammonia)氨是大气中的主要碱性物质,是细颗粒物的重要前驱体。它可以与硫酸盐和硝酸盐或其他化合物反应生成细颗粒物,造成各种环境和健康问题。氨沉降对于土壤酸化及水体富营养化也具有重要影响。人们越来越关注氨排放,以建立准确的排放清单并制定合理的减排措施。然而世界范围内许多氨排放清单的排放因子(EFs)和活动数据存在很大的不确定性。中国是氨排放的重要源,约占亚洲总排放的55%,约占全球总排放的20%。而农业是最重要的排放源,畜牧业氨排放占人为总排放的50%以上。因此,准确量化其排放特征显得尤为重要。科研团队为此开展研究北京大学环境科学与工程学院蔡旭晖研究团队于2...
2023 - 10 - 18
一般说来,丘陵起伏的地形,造成河水不能外泄,常在河口低洼处停蓄起来成湖,也就是河口湖。河口湖又称为“终点湖”、“尾闾湖”。指处于内流河河口、尾闾、终点的湖泊。由于气候变化、人口增多、工农业发展,加之水资源总量不足、时空分布不均等因素,导致不少地区的尾闾湖出现地下水位下降、绿洲面积减少、沙尘暴天气增加等问题。湖泊周边的生态系统发生变化,植被的多样性和数量减少,生态环境面临严重破坏。为了改善尾闾湖的现状,加强水资源管理,人工输水成为首要选择。基于此,生态输水对湖区植被的影响成为不少科研团队的研究方向。内陆河下游生态输水区白刺灌丛的水分利用策略:基于稳定同位素数据在干旱地区,内陆河流域的尾闾湖通常是绿洲边缘阻止风沙侵袭的天然屏障,其生态水文效应普遍表现为以地表水、地下水和天然降水为特征的植被水分关系。水分是尾闾湖周边沙地植被稳定的关键制约因子,植物-土壤水分关系是沙地生态水文过程的重要组成部分。...
2023 - 09 - 25
长江,全长6300余千米,中国第一大河,干流自西而东横贯中国中部,数百条支流辐辏南北,于崇明岛以东注入东海,流域面积180万平方千米,约占全国总面积的1/5,年入海水量9513亿立方米,占全国河流总入海水量的1/3以上。长江承载着丰富的生态系统和人类活动,对于全球气候变化的干预具有重要意义。在全球温室气体变化成为全球关注焦点的当下,长江作为世界上最大的亚热带河流,碳氮存储量备受科研研究所关注。今天的推荐的文章将带大家揭秘中国长江流域溶解温室气体(CO2、CH4和N2O)的空间分布和调控因素。河流,尤其是(亚)热带地区的大型河流,在全球温室气体预算中起着重要作用。在大尺度温室气体预算中忽略水生成分可能会高估陆地生态系统中碳和氮的储存量,但由于河流数据集的空间分布偏差,对潜在生态过程的理解不足,河流温室气体排放的估计存在很大的不确定性。长江是世界上最大的亚热带河流,近几十年来面临着密集的人类活...
关闭窗口】【打印
Copyright ©2018-2023 350vip葡京新集团
犀牛云提供企业云服务

350vip葡京新集团

地址:北京市海淀区安宁庄东路18号光华创业园5号楼(生产研发)
          光华创业园科研楼四层
电话:13910499761 13910499762 010-51292601
传真:010-82899770-8014
邮箱:info@li-ca.com
邮编:100085

 

地址:深圳市宝安区创业二路玖悦雅轩商业裙楼3层瑞思BEEPLUS 3029室 手机:13910499772

 


 


  • 您的姓名:
  • *
  • 公司名称:
  • *
  • 地址:
  • *
  • 电话:
  • *
  • 传真:
  • *
  • 电子邮箱:
  • *
  • 邮政编码:
  • *
  • 留言主题:
  • *
  • 详细说明:
  • *
在线留言
关注我们
  • 官方微信
  • 官方手机端
友情链接:
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 010-51292601
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开